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On the Modification of LDLT Factorizations 

By R. Fletcher and M. J. D. Powell 

Abstract. A number of methods are compared for modifying an LDLT 

factorization of a positive definite matrix A when a matrix of rank one is added 

to A. Both the efficiency and error propagation characteristics are discussed, and 

it is shown that a suitable method must be chosen with care. An error analysis of 

some of the algorithms is given which has novel features. A worked example which 

also illustrates error growth is presented. Extensions to the methods are desribed 

which enable them to be used advantageously in representing and updating positive 

semidefinite matrices. 

1. Introduction. Assume that an n x n positive definite symmetric matrix A 

is given in the factorized form 

(1.1) ~~~~~~A = LDLT li di liT 

where L = [II, 12, i n, InJ is a lower triangular matrix with unit diagonal elements, 

and D is a diagonal matrix with diagonal elements di > 0. This paper is concerned 

with the problem of computing the factors of a modified matrix 

(1.2) A =A ? uzzT 

in an efficient manner, where A is known from other considerations to be positive 

definite. Thus it is necessary to compute a unit lower triangular matrix L and a 

diagonal matrix D with di > 0 such that 

(1.3) A = LDL T = diT. 

The problem has a well-known application to quasi-Newton methods for uncon- 

strained optimization (see Gill and Murray [51, for example). In Section 2 of this 

paper, it is shown very simply how to write down an algorithm for a solution of this 

problem, and this algorithm turns out to be a specialization of one given by Bennett 

[1]. He considers modifying the factors of a general matrix A = LDU when a 

matrix XCYT of rank k (k < n) is added to A, and the specialization is that for 

which U = LT and k = 1. Gentleman [31 suggests an algorithm for computing the 
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triangular factors of the normal matrix in a linear least squares calculation. Building 
up this normal matrix, an observation at a time, is essentially repetition of (1.2), so 
Gentleman's method also turns out to be applicable to this problem, and has some 
features in common with the Bennett method. Gill and Murray [5] suggest two other 
methods which are apparently different and more expensive than the Bennett and 
Gentleman methods. However, it turns out that one of these methods is very closely 
related to the Bennett method. The relationships between these various methods are 
brought out in Section 2, where we also introduce a new method of similar type, but 
with important differences of detail. 

It is important to know which of these various algorithms, if any, is suitable 
for use in a general purpose subroutine. In Section 3, we consider this problem, 
looking for an algorithm of general applicability, which guarantees A to be positive 
definite, which has good error growth properties, and which is otherwise efficient 
from time and storage considerations. We show that the problem of maintaining 
positive definiteness in A, when round-off errors are present, must be tackled care- 
fully, and we give an example which shows that with some strategies, arbitrarily large 
error growth can take place. We also consider growth of error in general, and an error 
analysis of some of the methods is given in Section 5. Again, not all algorithms are 
stable in this respect. However, it is possible to construct algorithms which are sat- 
isfactory in all respects, and we find that a variation of our new method is preferable. 
A worked example is presented in Section 6, which also illustrates how errors can grow 
if care is not taken. 

The detailed error analysis in Section 5 possesses novel features. A posteriori 
bounds are given on each matrix element, rather than being expressed in terms of 
norms of the overall matrix. Because of this, it has been possible to show that the 
bounds are independent of any bad scaling which may be present in A. A similar 
analysis enables bounds for the least squares calculation to be determined. In this 
case, A has the form A = BTB where B is an m x n matrix (m > n). Fletcher 
and Powell produced the draft of a report early in 1973, in which this extension was 
carried out, and these bounds were superior to those given by Gentleman [3]. How- 
ever, for the least squares problem it is more appropriate to relate errors to the ma- 
trix B, so as to avoid any ill-conditioning which might be implied in forming the 
matrix A. This has been done in a more recent report due to Gentleman [2]. 

In Section 4, it is shown how positive semidefinite matrices, such as projection 
matrices, may be represented. This problem has an application to methods for op- 
timization, subject to linear constraints on the variables. Advantages of the LDLT 
representation, as against explicit storage of A, are described. 

2. Methods for Updating LDLT. A simple way exists of determining the 
factorization of A. It follows from the observation that di111f ? uzzT (where 

= 1) can be written as 1wxT?yT, where x and y are linear combinations of 11 
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and z which satisfy x1 = 1 and y1 = 0. The last condition is fulfilled directly 
using y = z - z11I and x can therefore be written generally as x = ? + 3y. It 

follows on equating terms that X = d + 3z2 , = Uz1 /X and ji = a - X2. Because 

Y1 = 0, XxxT can be identified as d 11 11 f. Thus, the first column of the modified 

factorization has been found, and the problem reduced to that of updating Si 2d IIT 

by the rank one matrix pyyT. Both these matrices have a zero first row and column, 

so the problem has been reduced to one in n - 1 variables. Repetition of this process 

enables the complete factorization of A to be determined. 

If uiZ(i)z(l)T denotes the remaining rank one matrix when 411_1d111if has 

been determined (defining a1 = a, z(1) = z and noting that zY) = 0 for all / < i), 

then the basic step of the algorithm can be expressed by 

(2.1) ?i d. 1 l) z (i+l)T = I1 dU F ? a. ) Z(i)T. 
(2.1) 1. d + r1 . + r 

This basic step involves the operations 

(2.2a) v. = i 

2 d. = d. ? ca v, 
(2.2b) + 

terminate if i = n, 

(2.2c) pi = a ividP, 

(2.2d) Z(-+ - viIP 

(2.2e) li= 1.+ i z3. l') 

(2.2f) Gi+ 1 =i dii 

and the complete algorithm requires this sequence to be repeated for i= 1, 2, * n. 

This process is the specialization to (1 .2) of the algorithm given by Bennett [1] for 

updating the factors of a general matrix on adding a matrix of low rank, except that 

Bennett writes qi = pi = viai and uses the equation ai+ 1 = ai - piqi/di in place of 

the equivalent equation (2.2f). In the form (2.2), the complete updating process 

requires n2 + 0(n) multiplications and no extra storage, assuming that L and D 

are overwritten by L and D, and that z is overwritten by the successive zi. 

A similar process has been described recently by Gentleman [3] in the slightly 

different context of factorizing the normal matrix of a linear least squares calcula- 

tion. In this case, a > 0, but the method may also be applied to the problem (1.2) 

for any value of a for which the calculated A is positive definite. It follows from 

(2.2f), (2.2c) and (2.2b) that 

(2.3) uani pce of ( I o 

and this equation is used by Gentleman in place of (2.2f). It also follows from (2.2e) 
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and (2.2d), after some manipulation using (2.2c) and (2.2b), that 

(2.4) 1 l 1d/d z(i) 

This equation is preferred in place of (2.2e) in some circumstances by Gentleman. It 
has the disadvantage that the calculation of 1 i requires an extra i - 1 multiplications 
as against (2.2e). On the other hand, there are also features in favour of (2.4) which 
will be further discussed in Section 3. 

Another equivalent method, which to our knowledge has not previously been 
reported, is one in which the Bennett/Gentleman approach is implemented in terms 
of t1 = UT1 rather than oi. We shall call this method the simple t-method; it con- 
sists of recurring for i = 1, 2, * , n the following sequence of operations 

(2.5a) vi = z) 

(2.5b) t+ = ti + V 2di 

(2.5c) 
d d 

tl+ 1 ? 
terminate if i = n, 

(2.5d) pi = (vildI)/ti 1' 

(2.5e) Z(i+ 1) = Z(i) - vi 1i, 

(2.5f) I E = li + pi z~i+ 1 ) 

where t1 = 1/u and z(1) = z. Equation (2.5c) is a rearrangement of (2.3) which 
is used here to compute di rather than ci-1 . Equation (2.5b) is obtained by re- 

arranging (2.2b) and (2.5c). Equation (2.5d) for calculating fi is preferred to (2.2c) 
because it saves a multiplication and also gives slightly better error propagation. An 
error analysis of the simple t-method and variations thereof is given in Section 5, and 
a worked example in Section 6. 

Two methods, which are at first sight different, are proposed by Gill and Murray 
[5]. In their Method B, Eq. (1.2) is written 

(2.6) A =L(D + vT)LT 

where v is determined by back substitution in the equations 

(2.7) Lv = z. 

Gill and Murray point out that the factorization of D + avvT can be written 

(2.8) D+uvvT=LDLT 

where D is the diagonal matrix in (1.3), and L is the unit lower triangular matrix 

whose elements below the diagonal have the values 
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(2.9) T.. = Vis < i. 

The quantities D and 1 ,, 02' ... I*, -1 can be determined from D, a and v in 
0(n) multiplications. Gill and Murray also show that the special form of L can be 
exploited to calculate the product L = LL in n2 + 0(n) multiplications. Thus, the 
modified factorization (1.3) can be determined by first calculating v from (2.7), then 
forming D and t1, B1 f3,~n1'and finally calculating L = LL. This method requires 
a total of 3n2/2 + 0(n) multiplications. 

In fact, Gill and Murray's Method B and the Bennett method (2.2) are closely 
related. In particular, the quantities vi and !3i occurring in (2.2) are the same as the 

vi and I3i occurring in (2.9). Furthermore, the back substitution process (2.7) can 
be written 

v. = zy) 
(2.10) l l , i= ~~~~~~1, 2, ,n, 

Z(i+ 1) = ZY) - v.I. 

which are just the equations (2.2a) and (2.2d). These equations occur naturally in 
Gill and Murray's recurrence relation for calculating L = LL. The Bennett method 
(2.2) achieves its efficiency relative to the Gill and Murray method by exploiting the 
equivalence between these two processes, and running the back substitution in parallel 

with the computation of D and L. 
Gill and Murray also suggest an alternative Method A for computing D and (. 

Because this method is much more complicated than that used in Method B, it will 
not be described in detail. However, the philosophy behind the method is important 
and we shall consider this further in Section 3. Details of all the methods described 
in the present section (except the simple t-method) can also be found in Gill et al. [4] 
with some additional less efficient methods for updating the LDLT factorization. 

3. Choosing a Method. In this section, a number of important considerations 
which govern the choice of method will be discussed. The aim is to give a method 
which is applicable either when a > 0 or a < 0, which is stable, which guarantees 
the positive definiteness of A, and which is most efficient from time and storage 
considerations, subject to these conditions. 

The first problem which we shall discuss is that of maintaining positive definite- 
ness of A. It is often the case that theoretical considerations indicate that A must 
be positive definite, apart from the effects of round-off error. This is always so when 
a > 0, but is also often the case when a < 0. It is imperative that this property be 
maintained in the presence of round-off error. Now, the Bennett algorithm (2.2) can 
give rise to negative di (and hence indefinite A), either in Eq. (2.2b) when a < 0, 
or due to a change of sign in ri+ 1 in (2.2f) when a > 0. The Gentleman algorithm 
avoids the latter possibility through the use of (2.3) for calculating ci+ 1, but the 
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former still applies. The simple t-method can lose positive definiteness when a < 0 

due to ti+ 1 becoming positive in (2.5b). 
We shall now consider how the simple t-method might be modified to deal with 

the case where a < 0 but t1 1 becomes positive, although A is known to be posi- 

tive definite from theoretical considerations. Similar comments will apply to the Ben- 

nett and Gentleman methods. 
We note that (2.3) and the definition of ti = u71 give 

ar U1 tl1 iHd/ I 

and hence 

U+l t1 det D det A 

These equations not only give insight into the role played by the Uv or ti, but in- 

dicate particularly the need to keep the signs of the tj or ai constant, in the presence 

of the round-off error. 
One obvious way of keeping A positive definite with the simple t-method is 

to check whether ti I is negative after using (2.5b), and if not, to replace it by some 

suitable negative value, for instance t,. However, usually by the time a nonpositive 

ti+ 1 is found, a substantial part of the factorization of A will already have been 

calculated; the following simple example shows that catastrophic error growth may 

have taken place. 
Let A be diagonal so that L = I and D = diag(10-6/(1 - 10-6), 1/(1 - 10-6), 1). 

Let a I- 1 and z = v = (.001, .001, .001). Although A for this example is not 

positive definite, a perturbation to a such that a = - 1 + 10-6 is -enough to make 

A positive definite. If 10 6 is regarded as the relative machine precision, then this 

example can be regarded as one for which A is positive definite to machine pre- 

cision, and is therefore one for which the algorithm ought to work. In fact, in exact 

arithmetic, the algorithm gives the values t1 = - 1, t2 = - 10-6, t3 = - l-12, t4 = 

10-6 - 10-12. Because t4 > 0, it is replaced by a negative value and this value 

does not affect what follows. Consider the calculation of 12. The value of .2 is 

(v/d)/t - 109 and hence 1 1 06. Because d 6106 jf jdT gives a 
-2 d2)3 32 1 2 0.'1 '2 2 2giea 

contribution to A33 of - + 106. Yet, the value of A33 in the perturbed problem 

with a=- 1 + 10-6 is A33 ' 1. Thus substantial error growth takes place, before 

the loss of positive definiteness is recognized. 
It is desirable to find a technique for overcoming this deficiency which intro- 

duces a time penalty only when the value of tip 1 indicates that positive definite- 

ness has been lost, because these occasions are rare. For instance, one approach which 

avoids using substantial extra storage is to store the f,3 and the t1, and if a t1 I > 

0 is encountered, then the original problem can be recovered by running all the 
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recurrences in (2.5) backward for values i, i - 1, - * , 1. However, the example of 

the last paragraph shows that large numbers can arise in 11, 1 < i when ti4 1 > 0, 
which tends to give large errors in the recomputed 11. Therefore, we have not con- 
sidered this approach any further. 

It seems therefore that two alternatives remain. One is to accept the inefficiency 
of always calculating the vector v initially so that the sign of tn + can be checked 
before overwriting the original matrices L and D. If tn + 1 > 0, then the problem 
must be modified, a subject to which we will return shortly. This is the philosophy 
behind Gill and Murray's Method A. The other alternative is always to make available 

YIn2 extra storage locations, which almost doubles the storage space required for 
the numbers of the calculation. Various approaches are then possible, the most simple 
of which is to store the original problem so that it can be recovered exactly if a t 1 
> 0 is encountered. However, we have decided to accept the time penalty of cal- 
culating the vector v initially, rather than the storage penalty. One reason for this 
decision is that in many applications (including those to quasi-Newton methods for 
minimization), the vector v is already available at the start of the updating calcula- 
tion. This can arise in at least two ways. It may be that the vector A- 1z has already 
been calculated, whence v is available because the first step in calculating A- 1z is 
to back substitute in the equations Lv = z. Alternatively, z may have been calculated 
as z = Au where u is some arbitrary vector, in which case the intermediate quantity 
DLTu is the required vector v. 

Therefore, we now assume that the vector v is available at the start of the 
algorithm when a < 0, and we consider what is the best way to modify the problem 
if a ti+ I > 0 is obtained (or a di < 0 in the Bennett/Gentleman method). We shall 
also consider whether the simple t-method or the Bennett/Gentleman method is more 
suitable in these circumstances. An important fact to realize is that when a tn+ 1 > 
0 is calculated, then, because of the assumption that theoretically A is positive 
definite, the correct value of tn +1 should be negative but of a magnitude comparable 
to the round-off errors in the calculation. A satisfactory procedure is to recalculate 
the t, using 

(3.1) tn+ = e/Ua 

(3.2) t. = tj1 - vl/d., i = n, n - 1, , 1, 

where e is the relative machine precision. Thus, a is replaced by the new value of 
tj 1 which gives a problem that is close to the original problem by our assumptions 
on A. These new values of ti are then used in the recursion (2.5). The error analysis 
for the quantities ti calculated by (3.2) is almost the same as that for (2.5b); a 
similar result to that of Section 5 applies to the modified problem. 

A similar approach is possible with the Gentleman method. If a di < 0 is 
detected, then, although it is not possible to recur Eqs. (2.2b) and (2.3) in the opposite 
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direction, it is possible to use (3.1) and (3.2) as before, additionally calculating di 
from di = di ti+ /ti. However, there are a number of minor disadvantages to this. 
One is that the Bennett/Gentleman approach overwrites the di by di. Thus, an extra 
vector of storage must be made available in case the ti and di have to be recalculated. 
Another is that to calculate dn by the Gentleman approach requires about 5n 
arithmetic operations, whereas to calculate tn + 1 by the t-method requires only 3n. 
Thus, not only are there 2n wasted operations, but the necessity for fewer opera- 
tions implies that there is less likelihood of tn - 1 > 0 being obtained rather than 

dn < 0 (assuming that the values obtained in exact arithmetic would have had the 
correct sign). In fact, the error analysis in Section 5 indicates that, even in cases when 
the calculation does not break down on this account, and whether or not a < 0, the 
Bennett/Gentleman method has a term which increases as 5n in the error bound, 
whereas the t-method has a corresponding term which increases only as 3n. (Com- 
pare bounds (5.28), (5.29) and (5.30) in Section 5.) This term ultimately dominates 
for large n, and so it provides a further reason in favour of the t-method. These 
considerations have led us to prefer the t-method and we shall not consider the 
Bennett/Gentleman method for calculating D and the a, any further. The argu- 
ments which have led us to this decision are partly those which influenced Gill and 
Murray [4] in preferring their Method A. However, Method A is less efficient than 
the t-method and does not seem to have any corresponding advantages. 

Finally, we have to decide whether to choose Eq. (2.5f) or Eq. (2.4) to calculate 
1i. As we pointed out above, (2.5f) is cheaper, but the following remark favours 
Eq. (2.4). Let (2.5f) be written 

1 1 1 ) 3.3) l= + ,ii )=(1-vp) + pi Z~i 

by virtue of (2.5e). Then, if 1 - vi1i = di/di is very small, as may happen when 
a > 0, then Eq. (3.3) shows that to use (2.5f) might cause cancellation between the 

li term and the vijili term implicit in giz(l+ 1). An error analysis for the linear 
least squares calculation using (2.5f) has been given by Gentleman [3] and shows 
a factor v/d, in the error bound. The bounds given in Section 5 for the simple 
t-method also contain the factor VTJ The worked example of Section 6 shows 
how error growth of this magnitude is achieved in practice. If (2.4) is used in place 
of (2.5f), the factor V'di7, appears instead. Thus, the most obvious approach to 
minimize the total error bound is to use (2.5f) when o < 0 and (2.4) when u > 0. 
This method requires '3n2/2 + 0(n) multiplications overall when u > 0. 

A more attractive alternative is available, however, which reduces the total 
number of multiplications required when o > 0. It is to use (2.5f), unless 
is rather large (li7di > K, say). Gentleman suggests this idea and uses the value 
K = 10. Ideally, K should be as large as possible, subject to the contribution from 

VRtildi to the error not becoming dominant. In our error analysis, the coefficients 
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13, 4 and 6 NaM appear in (5.16) and, in the total error bound, the terms 17 + 

12V occur. This suggests that K = 10 is rather on the large side. Therefore, we 
use Eq. (2.5f) instead of Eq. (2.4) only when ? < 2. We call the resulting method 
the composite t-method. We monitored the value of di/di- on a large number of ap- 
plications of the composite t-method and find that (2.4) is used on fewer than 1/n 
of the total number of occasions. Hence, to all intents and purposes, the composite 
t-method can be regarded as one which takes n2 + 0(n) multiplications when u > 0, 
which is the advantage claimed for the simple t-method. 

In practice, Eq. (2.4) is applied in the form 

(3.4) li=z i + A;Z() 

where 'y = dildi = ti/ti+ 1 . We prefer not to use the value of yj in the calculation 

of di (see Eq. (2.5c)), for, if we did, then every iteration would require an additional 
division to apply (2.5c) rather than a multiplication. Nor do we use the value of cxi 
to calculate the term lidi/di in (2.4) by lI/cxj, because this again requires n - i 
divisions on those occasions when (2.4) is used. Instead, we use multiplications in 
both calculations, for the price of wasting one operation on those few occasions when 
the ratio di/di is so large that Eq. (3.4) has to be used. 

In fact, the bounds given in Section 5 for the simple t-method sometimes exag- 
gerate the dangers of using (2.5f) all the time, and indeed it has been observed in 
practice that methods using (2.5f) do not necessarily give error growth when di/di 
is large (W. Murray-private communication). Reference to Eq. (3.3) indicates that 
even when di/di is small, serious error growth can occur only if, in addition, an 
element L. is large for some j > i. The error analysis in Section 5 is extended to 
show this effect, which is also illustrated by the worked example of Section 6. How- 
ever the error analysis does not lead to a more convenient computational scheme, 
because the test which it suggests would be expensive to calculate. 

To summarize what we think to be the best method, we outline the steps in 
the composite t-method, including the modifications to ensure that A remains posi- 
tive definite. The inefficiency introduced by having the same code to cater for both 
a < 0 and a > 0 is negligible. 

The composite t-method: terminate if a = 0: Let t = o- 1 and z(1) =z 

then 
(i) if o>0 goto (v), 
(ii) if v is not available, solve Lv = z for v, 

(iii) compute tj 1 = ti + V2/di, i- 1, 2 * n, 

(iv) if any ti 1 > 0, recompute the ti from (3.1) and (3.2), 
(v) repeat for i = 1, 2, , n the following sequence 
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= Z(i) 
Vi i , 

if or > 0 then t.+ t. + vi2Idi5 

? ti+ 1 Item 

di diti5 

terminate if i = n, 

i, (vild,)Iti+ 1 

Z(i+ 1) = Z(i) -vj 

if ai > 4 then 'Y. = t/ti+ 1 and I= ?3ils +Lz(i) 

1 1 1 ) else I = I + ,Bz~i 

A FORTRAN subroutine, code MC llA, has been written for this process and is avail- 

able through the Harwell Subroutine Library. It uses only - 1in2 storage locations, 

L and D being stored in a one dimensional form. Additional entry points are avail- 

able, which could easily be separated off as subroutines, to calculate Au and A -1u 

when L and D are represented in this special form. Facility is provided for making 

the vector v available to the updating routine. Entry points are also given to factor- 

ize an arbitrary positive definite matrix, and to multiply out the factors either to give 

A or A-1. 

4. Semidefinite Matrices. It is also possible to update positive semidefinite 

matrices using some of the methods described in Sections 2 and 3, and, in particular, 

the t-methods are suitable. Indeed, semidefiniteness gives some advantages that are 

discussed later in this section. However, special action may have to be taken when 

any di = 0 or di = 0. There are three cases. 

Firstly, the case when the rank of A is expected to remain unchanged is con- 

sidered. In this case, z is in the column space of A and so can be written 

(4.1) z = Au = LDLTu. 

If we define N- {i: di = O} and denote DLTu by w, then wi = 0 Vi EN. But 

v is defined by z =Lv so v = w. Hence, v 0 Vi EN. Thus, if i EN, then, by 

virtue of (2.2b) and (2.1), di = d= 0, and so Z(+1) = z(i) and T is arbitrary. 

Thus, the only action which needs to be taken is to set v, = 0 and ti+1 = ti. If 

a value of ti+ 1 > 0 is calculated when u < 0, then the recalculation of the ti 
based on (3.1) and (3.2) can be carried out as before, except that we set ti = ti+ 
if iEN. 

In the second case, the rank of A is expected to decrease by one. In this 

situation, a < 0 and it is known that tn+ 1 = 0. A typical instance would be the 

operation 
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A =A - AuuTA/uTAu 

for arbitrary u. If the simple t-method (2.5) were applied to such problems, it is un- 

likely that a tn + 1 would be obtained which was exactly zero. In these circumstances, 

it is appropriate to set tn+1 = 0 and to use the recurrence (3.2) to calculate the ti, 

setting vi = 0, ti = ti+ 1, i E N. The ability to use the code written for (3.2) is very 

convenient. Note that if N D {p, p + 1, * , n} then Up = Up+ 1 = * = Vn = 0 
and hence tP tp + 1 = * = tn= tn + 1 = 0. It is therefore important to avoid cal- 

culating tp + 1 tp in such circumstances. In fact, when the value of i is such that 

ti+ 1 = 0, then, after setting di = 0, the whole process can be terminated. 

In the third case, the rank of A is expected to increase by one. In this case, 

a is always positive and the increase in rank occurs when the composite t-method 

finds i CN and vi #0. Then, from (2.2b), d =a v23 vti and z'='z()/v1 by 
virtue of (2.4). The iteration is terminated after setting 11 = 1. and di = d1 for 

all j > i. If vi = 0, however, the action appropriate to the first case is taken, and 

the iteration is continued. If vi = 0 for all i EN, then the rank of A does not 

increase by one as expected. 

One advantage to be gained by representing positive semidefinite matrices in 

this way is that multiplication by A is quicker because only those terms lidilT, 
i M N need be considered. A more important advantage is that the factorized form 

of A has the correct rank imposed upon it, whereas if A were stored explicitly, 

rounding errors would make the rank of A indeterminate. A similar advantage is 

that when updating A knowing that the rank of A should remain the same, then 

the operation of setting vi = 0 for i C N annihilates some of the rounding errors 

incurred in forming z in (4.1) which would otherwise cause z not to lie in the 

column space of A. 

These modifications for singular matrices are relevant to numerical methods 

such as gradient projection (Rosen [7]) and Goldfarb's method [6] for minimizing 

functions of many variables subject to linear constraints. One of the practical 

difficulties with Goldfarb's method is caused by loss of accuracy due to errors in a 

supposedly positive semidefinite matrix, and it may be worth investigating whether 

representing matrices in the way described here is preferable. Facilities for dealing 

with semidefinite matrices as described in this section are incorporated into the 

subroutine MC 11 A. 

5. An Error Analysis. A computer error analysis of the updating processes of 

the t-methods will now be given. The ith basic step of the methods, corresponding 

exactly to Eq. (2.1), is 

(5.1) 1* d* 1*T + Z*Z*TIt* = ldlT + ZZTlt 
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where asterisks denote quantities which must be evaluated on the ith step. Computed 

quantities will be denoted by bars, and the first step will be to bound the error E(i) 

in carrying out (5.1), defined by 

(5.2) l * d-*1 *T + 1*Z*T/y * ldIT + Z ZT/t ? 

The' i* and t* from one basic step are the exact data z and t for the next basic 

step. It therefore follows that the complete computed factorization is an exact factor- 

ization of a perturbation of the original problem given by 

(5.3) A =? LDLT = LDLT + UzzT + E 

where E = ZE&). Bounds on E will be derived. Note that the matrix A is now 

a computed matrix, instead of the exact matrix of (1.2). 

The equation a = (b * c)(l + e) where lel S e, see Wilkinson [8], will form 

the basis of the analysis, where * represents any of +, -, x, /, where a is the result 

of computing and rounding b * c in floating-point arithmetic, and where e is the 

relative machine precision (2-P in many cases). 

In the simple t-method (see Eqs. (2.5)) the following computations are made 

t* = (1 + e1)(t + (1 + e2)(1 + e3)v2Id), 

d (1 + e4)(1 + e5)dt *It, 

(5.4) = (1 + e2)(1 + e6)(vld)It * 

z= (1 + e1)(z. -(1 +e21)v11) | 

l= (1 ? e31)(l. + (1 + e4) 3z)) 

where e1, e2, ... and e1l, e21, * * - each represent separate errors bounded by e. 

The analysis is simplified if the intermediate hatted quantities 

V =V, 

t =t 

(5.5) d = d/((l + e2)(1 + e?3)) 

z. =Zj, 

1. = (1 + e2j)1j, 

are introduced. Also if these quantities are substituted into the right-hand sides of 

Eqs. (2.5), then we can define ?t*, d*, i, j* and l* as being the resulting left-hand 

sides without error. Then it follows from (5.2) that E(') is the matrix 

(5.6) Ei) = (. *d?T*T - j^* -j*T) + (A*z*T/[* - z*-*TI?*) ? (ldlT- IT). 
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Now, (5.5) gives the equation 

1.d -di ( e + ] j k Ij Ik [(1 ? e2j)(1 ? e2k)(l ? e2) (1 + e3)' - l]ljdlk 

= (e2j + e2k -e2 - e3+ O(2))1jdlk, j> i k> i, 

where the 0(e2) indicates a term that is bounded by a small multiple of e2. It also 

follows from (5.5) that 

(5.8) = ( 
zj I (l +Iel, I i, 

and hence that 

(5.9) j**/t *z* /ti* ( e + e +. +e k 
0(e?))y * 

The definitions of (3, d and imply 

(5.10) = 3(1 + el)(1 + e3)/(1 + e6) 

so that from the definitions of Ij and 1* and from the second part of (5.8), there 

follows 

(5.11) Tj [e21 - e3i] Ij 

+ [(1 + e)(1 + e3)(1 + e6l(1 + el,)-' -(1 + e31)(1 ?e4,)] 3Z 

Eliminating ,Bz7 using the last equation of (5.4) then gives the result 

l*=1*(1 e. ?e-e- -e -e4 ? (C2)') 
(5.12) 1 ll e-e3 e6 eli 3j 4j 

+ Ij(-?el - e3 + e6 + el( + e2j + e4j + ?e2)). 

Furthermore, by definition of d* and the first part of (5.8), 

(5.13) = (1 + e1l)(1 e + e)(1 + e4)(1 + e5)d 

so subsituting from (5.12) and (5.13), it follows that 

Ijd k dI k 

= ld ` 
e1 ee + e? - e + e? + e0 + 2e? 

(5.14) + el, + e3j + e4j + elk + e3k + e4k + ?(C2)) 

+ (4d* T(e1 ? - e - e1- - e- e41 + 0(e2)) 

? 
kI* l(e ? e3 e6 - lk e2k e4k + 0(e )) 

+ ?j3* 1k(0(e2)), j>i, k>i. 

Then (5.6), (5.7), (5.9) and (5.14) give an expression for Ek), j > i, k > i, namely 
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E(i) =ldl k (- e + e3 ?e4 ? e5 + 2e6 ik I k1 2 3 4 6 

+ el, + e?3 + e4i + elk + e3k + e4k + 0(e2)) 

(5.15) +Ij*Ik*(e1 ? e3 -ed -e ee 2/ e4/ + 0(c4)) 

?lI*d~lk(el 3 - - elk - 4k + 0(e)) 

+ idlk( e2 e3 + e2 + e 2k + 0(e2) + O(e )d*Id) 

+ zj*/t*( e1 + e1. + elk + O(e2)). 

More simple expressions obtain for EY) = E(), j > i, and for PO which can be ii IiL i 

covered by allowing (5.16) to apply for all i > i, k > i. Of course, E(i) = 0 if either jk 

j<i or k<i. 

We shall now proceed to obtain a bound on E(). Because of the way in which "jk 

the 0(c2) terms occur, it is clear that, except perhaps for the O(e2)d*Id term, these 
terms will only make small relative perturbations to the coefficients in the final re- 
sult; with this in mind, such terms will henceforth be neglected. Then (5.15) yields 

(5.16) <)1E'i < e J 3Jiz*kIt*l + 13a1ak + (4 + O(e)d*Id)b b 

+ 6\rd*1d(aJbk + blak)} 

where a1 = d*l/2FIM and b= dl/211,1. Now a1 and b, are just elements in the 
Choleski (LLT) factors of A and A, respectively, so (5.16) indicates correctly that 

unacceptably large errors may occur only when N'd7Y is large, which happens only 
when a>O. 

A similar analysis can be performed when Eq. (3.4) is used to calculate J* 

instead of Eq. (2.5f). In this case, we replace the last line of expression (5.4) by the 
equations 

1Y=(1 +?e7)tIT* 
(5.17) 

77 = (1 + e31)((1 + e41)Y1" + (1 + e51)0jz), j> > 

The formula analogous to (5.12) is now 

(8* , - - - e~f + e(e2 )) 

+ (- e3 + e6 - e7 + e2i -e4. + e51 + 0(62))lidld 

and this leads to the following expression for E j> i, k > i, 
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E() =7dI*(- ei + e2 - e3 + e4 + e + 2e6 

+e3j +e5 +e3 + e5k +0(e2)) 

(5.19) ?Lldlk(e3 - e6 + e7 - e21 + e4. - e51 + 0(62)) 

+?l.dlk(e3 - e6 + e7 -e2k +ek -ek ? 0()) 

+ fdlk(e2 e3 + e2 + e2k ? 0(e2) ? O(e2)dld*) 
+1.dl(-e ?e ?e ?e 0(e2)), 0(2d/* 

+ FZi*i /t*(- el + el + el + O~e2A, I k~t 1 if 1k 

and hence to the bound 

IE(i)1 <e{3IjZF*/t*I + 1hlaja + (4 + k(c)dl?)bjb 
(5.20) 

jk I k I k 0(k/d) 

+ (520/dji(ab + bjak)}. 

This bound, in contrast to (5.16), shows that unacceptably large errors may occur 
only when vN/d' is large, which happens only when a < 0. It follows from (5.16) 
and (5.20) that very satisfactory error bounds hold for composite methods. For in- 
stance, if (2.5f) is used if a < 0 and (3.4) if a > 0, then it follows that the remain- 
ing 0(e2) terms can be neglected, and 

(5.21) IE(') I e{3 j*/t* + I3a ak + 4Ibb + 6(aIb + bIa t-fk fk k 4bibk (~k ba) 

Moreover, for the composite t-method defined at the end of Section 3, where (2.5f) 
is used if and only if d*Id < 4, we have the bound 

(5.22) 1Ei IJ {3 iZ!Z/t* I + l3a-ak + 4bfbk + 12(afbk + bfak)}. 

To make further progress, we apply the Cauchy-Schwarz inequality to (5.22) 
to obtain 

(5.23) JE(k i < e{3 jZj 11t*1 + (25d*i*2 
? 

16dl)lI2(25d**2 + 16d IEXik I k I k 6dk'I} 

This inequality can be used to obtain bounds for the total error E (see Eq. (5.3)) 
for the composite t-method. The case a > 0 is considered first. 

The computed matrix A in (5.3) satisfies the equation 

(5.24) A = ' d 1 dIT ? I d lT z(i)z(i)T/t E(P), 

for i = 1, 2, , n, where 1p is the vector 1* of (5.2) calculated on the pth stage. 
The diagonal elements of this matrix equation give the inequality 

(5.25) (zAi) /H12 j CA + H I)12 
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where H= Ii IE('). Moreover, by the definition of i and A, the inequalities 

(5.26) td2 ? -., E 
PI1P M if p=1 pip if 

also hold. Now the definition of H, expression (5.23), the Cauchy-Schwarz inequality, 

and expressions (5.25) and (5.26) give the bounds 

Hjk = E Ik 

< eA3 |jzi 1) I Iz + I ) I + 

(5.27) + (25 2d. 12 + 16 2d l121)l2 (25 dkli? + 16 Edkldi) /2 

? e 3 1(A11 ? HII)(Akk + Hkk) + 41 AA .kk 

By letting j = k, it follows that Hjj ?1Xi.441 ? 3X)/(1 - 3/e) so we may neglect 

the H11 and Hkk terms in (5.27) because they are second order. Thus, because 

[E ? Hik, we obtain the inequality 

(5.28) ESkI < c(3j ? 41) - 

where I < k, which is our main bound on the total error of the calculation. Of 
course, it is possible to simplify to maxiZii and hence to 1iA11, but 

(5.28) is sharper. Also, it provides a bound that, in terms of relative errors, is in- 
variant under scaling of rows and columns in A. Note that the dependence of (5.28) 
on the dimension of the problem is quite modest. A similar analysis for the case 
a < 0, when inequality (5.21) holds, yields the result 

(5.29) EIk| < e(3j + 29) A1A *kk* 

A similar type of error analysis can be carried out when using the Gentleman- 

Bennett formulae. For a composite strategy that uses (2.5f) when d*Id < 4 and 

(3.4) otherwise, the bounds 

(5.30) WjkE I e(5? + 39) AA a > O. 

E. i 6Ie(5I + 27))AIIA , a<0, 

are obtained, where again j ? k. 

Although the results (5.28) and (5.29) indicate the satisfactory nature of the 
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composite t-method, (5.16) may exaggerate the dangers of using the simple formula 

(2.5f) when a > 0. It has been observed in practice that d*Id can become very 

large without any growth in error being apparent. This can be explained using the 

above error analysis but rearranging the bounds in a different way. For instance, if 

all the off-diagonal elements of L satisfy the inequality 

(5.31) 1..I <Vjod".) ii, j, j > i, 

then the last term in (5.16) can be written 

(5.32) 6(lj.id al * + 
l, 

Id < 
6(id*1/21*IKl,.7+ Id * 1 /2T I*l /7k). (5.2) (IlId*l~i? ,~j 'k k ' I 

If the same analysis is followed, it is readily seen that a bound like (5.28) applies, 

but with 29 replacing 41, even when J /d, is large (provided that the term 

?(e)c~i/di can be neglected). An alternative way of presenting the result is to define 

(5.33) p =i max , max mimh@'%di, max 11i/J4 ) 

in which pi is small either if \/7Tdi is small or if the subdiagonal elements l1, i > i, 

are all small. Using the simple notation introduced at the start of Section 5 for the 

ith basic step, if maxj>il1IjNd*/?4.< K d*Id then it follows that <d*11211 

piL\/W7 for all i > i. If, on the other hand, vI*Id is smaller, then Id*l/21.I < 

pild'121ij. Thus, from (5.16), by the same argument as before, one of the following 
inequalities must be true, 

E ?( < e{3VIF!iIT* VIt*I + ((13 + 6p,)d *172 + 4d 12 + 6pi? j/j) 12 

((13 + 6,L)d*i**2 + 4dl* ? 6II*kkk)1/2} 

or 

Ejk() < e{3jZh*j/lZlt*tl + ((13 + 6p.)d*T,2 + (4 + 6?,)dl?)12 

((13 + 6p,)d*12 ? (4 + 6? . d 122 

and this implies that 

E(? < et 31Z-j*I IZ* I/ It*I + ((13 + 6pL)d*1T*2 + (4 + 6pI)dl ? 6~jjjj) 1/i2 
jk ,i k i 1I 1 

((13 + 6,i)dT*12 + (4 + 6,i)ddl* + 6i4 k/k)1 2}. 

Following the same argument as above now leads to the overall result 

(5.34) Ekl I e(3j + 17 + 181) 7 , j k, a > 0. 
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Therefore, if M is small (either because the d*Id are all small, or because the 

ilj are small whenI is large), then an acceptable bound on the error is obtained. 
Even if i is not small, the error it causes does not grow with n. Nonetheless, 
because ji might be large, it is necessary to use some sort of composite process. 
Unfortunately, the expense of calculating maxj1j i l lV I4 precludes its use in an 
algorithm. However, it does explain practical experience with the simple formula 

(2.5f) more fully than the bounds based solely on d 

6. A Worked Example. An example of the modification process is given to 
illustrate the working of the simple and composite t-methods. The example is also 
chosen to show the effect of the errors which. can arise when using formula (2.5f') in 
the simple t-method when d7"dd is large. To show this error growth, it is necessary, 
by virtue of the latter part of Section 5, that the example have the property that 
both aj/d. is large and also that some ip, j > i, is large. An appropriate example 
is constructed in the following way. The exact rational factorization of the 4 x 4 
segment of the Hilbert matrix (H11i = 1I(1 ? j - 1)) is given by 

1/2 1 1/12 

( 1/3 1 1D 1/180 

1/4 9/10 3/2 1 1/2800 

In this representation, any errors are avoided which arise from the ill-conditioning 
normally associated with a Hilbert matrix. The matrix A is chosen by scaling H 
by multiplying both its second column and then second row by 10-2, giving 

1 1/2 10-2 1/3 1/4 

1/2 10-2 1/3 10-4 1/4- 10-2 1/5 10-2 

1/3 1/4- 10-2 1/5 1/6 

1/4 1/5 10-2 1/6 1/7 
with factors 

1 1 

(6.3) L- 1/200 1 D 1/12 10-4 

1/3 100 1 1/180 

1/4 90 3/2 1 1/2800 

This factorization has the property that 132 and 142 are large relative to 1, and 
that d2 is small. To create a matrix A for which d2 ' 1- so that d72/d2 is large, 
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TABLE 1. A Worked Example Showing Error Growth 

L = I D I a=1 z=1 

.005 1 .833310-5 1 

.3333 100 1 .555610-2 1 

.25 90 1.5 1 .357110-3 1 

1 2 3 4 

v. 1 .9950 -98.83 59.40 

vildi 1 1194102 -1779101 1663102 

ti+ 1 2 1188102 1877103 1176104 

ti+ l Iti 2 5940101 15.80 6.265 

ai 2 .4950 .08778 .223710-2 

pi .5 1.005 -.947810-2 

Z(i+ 1) 0 
.9950 
.6667 -98.83 
.7500 -88.80 59.40 

1. (simple t-method, using (2.5f)) 
1 
.5025 1 
.6667 .6800 1 
.6250 .7600 .9370 

1i (composite t-method, using (3.4)) 
1 

.5025 1 

.6667 .6717 1 
.6250 .7553 .9365 

equivalent A (simple t-method), lower triangle only 
2 
1.0050 1.0000 
1.3334 1.0066 1.2056 
1.2500 1.0043 1.1714 1.1465 

equivalent A (composite t-method), lower triangle only 

2 
1.0050 1.0000 
1.3334 1.0025 1.2001 
1.2500 1.0020 1.1667 1.1429 
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1 is added to every element of A, so destroying the bad scaling. This corresponds 
to a rank one modification of A for which 

(6.4) a 1, z 
1 

To show the error growth, the factors in (6.3) are represented to four significant 
decimal digits, and computations are carried out in four digit decimal floating-point 
arithmetic. The results obtained using the simple and composite t-methods are set 
out in detail in Table 1. On examining these results, it will be seen that the methods 
do not differ in the numbers obtained for TV because, at this stage, the bad scaling 
which has been introduced has no effect. However, for the second column of L, 
N/V2 d2 = = 59400 - 250. Thus, from the error analysis, we might expect 
to lose two significant figures in T2 when using the simple t-method, and, indeed, 
comparison of T2 produced by the two methods shows that this is what happens. 
If the computation of T32 and 742 is carried out separately by (2.5f) and by 
(3.4), then the loss of significance in using the former is easily seen. The matrix 2 
corresponding to the calculated factors r and D' has also been calculated (exactly) 
and it can be seen that the matrix A given by the composite t-method agrees to 
within 1 in the fifth significant figure with the matrix obtained by adding l's to the 
elements of (6.2). The matrix a obtained from the simple t-method however shows 
errors in the last two figures. 
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